Everything* you ever wanted to know about perceived income but were afraid to ask

This is a follow-up to my previous post. For context, you may wish to read this first. In that post I discussed how a plot from a Guardian piece (based on a policy paper) made the claim that German earners tend to misjudge themselves as being closer to the mean or, in the authors’ own words, “everyone thinks they’re middle class“. Now last week, I simply looked at this in the simplest way possible. What I think this plot shows is simply the effect of transforming a normal-ish data distribution into a quantile scale. For reference, here is the original figure again:

The column on the left aren’t data. They simply label the deciles, 10% brackets of the income distribution. My point previously was that if you calculate the means of the actual data for each decile you get exactly this line-squeeze plot that is shown here. Obviously this depends on the range of the scale you use. I simply transformed (normalised) the income data into a 1-10 scale where the maximum earner gets a score of 10 and everyone else is below. The point really is that in this scenario this has absolutely nothing to do with perceiving your income at all. It is simply plotting the normalised income data and you produce a plot that is highly reminiscent of the real thing.

Does the question matter?

Obviously my example wasn’t really mimicking what happens with perceived income. By design, it wasn’t supposed to. However, this seems to have led to some confusion about what my “simulation” (if you can even call it that) was showing. A blog post by Dino Carpentras argues that what matters here is how perceived income was measured. Here I want to show why I believe this isn’t the case.

First of all, Dino suggested that if people indeed reported their decile then the plot should have perfectly horizontal lines. Dino’s post already includes some very nice illustrations of that so I won’t rehash that here and instead encourage you to read that post. A similar point was made to me on Twitter by Rob McCutcheon. Now, obviously if people actually reported their true deciles then this would indeed be the case. In this case we are simply plotting the decile against the decile – no surprises there. In fact, almost the same would happen if they estimated the exact quantile they fall in and we then average that (that’s what I think Rob’s tweet is showing but I admit my R is too rusty to get into this right now).

My previous post implicitly assumed that people are not actually doing that. When you ask people to rate themselves on a 1-10 scale in terms of where their income lies, I doubt people will think about deciles. But keep in mind that the actual survey asked the participants to rate exactly that. Yet even in this case, I doubt that people are naturally inclined to think about themselves in terms of quantiles. Humans are terrible at judging distributions and probability and this is no exception. However, this is an empirical question – there may well be a lot of research on this already that I’m unaware of and I’d be curious to know about it.

But I maintain that my previous point still stands. To illustrate, I first show what the data would look like in these different scenarios if people could indeed judge their income perfectly on either scale. The plot below is showing what I used in my example previously. This is a distribution of (simulated) actual incomes. The x-axis shows the income in fictitious dollars. All my previous simulation did was to normalise so the numbers/ticks on the x-axis are changed to be between 1-10 but all the relationships remain the same.

But now let us assume that people can judge their income quantile. This comes with a big assumption that all survey respondents even know what that means, which I’d doubt strongly. But let’s take that granted that any individual is able to report accurately what percentage of the population earns less than them. Below I plot that on the y-axis against the actual income on the x-axis. It gives you the characteristic sigmoid shape – it’s a function most psychophysicists will be very familiar with: the cumulative Gaussian.

If we averaged the y-values for each x-decile and plotted this the way the original graph did, we would get close to horizontal lines. That’s the example I believe Rob showed in his tweet above. However, Dino’s post goes further and assumes people can actually report their deciles (that is, answer the question the survey asked perfectly). That is effectively rounding the quantile reports into 10% brackets. Here is the plot of that. It still follows the vague sigmoid shape but becomes sharply edged.

If you now plotted the line squeeze diagram used in the original graph, you would get perfectly horizontal lines. As I said, I won’t replot this; there really is no need for it. But obviously this is not a realistic scenario. We are talking about self-ratings here. In my last post I already elaborated on a few psychological factors why self-rating measures will be noisy. This is by no means exhaustive. There will be error on any measure, starting from simple mistakes in self-report or whatever. While we should always seek to reduce the noise in our measurements, noisy measurements are at the heart of science.

So let’s simulate that. Sources of error will affect the “perceived income” construct at several levels. The simplest we can do to simulate it is an error on how much the individual thinks their actual income is – we take each person’s income and add a Gaussian error. I used a Gaussian with SD=$30,000. That may be excessive but we don’t really know that. There is likely error in how high people think their income is relative to their peers and general spending power. Even more likely, there must be error on how they rate themselves on the 1-10 decile scale. I suspect that when transformed back into actual income this will be disproportionally larger than the error on judging their own income in dollars. It doesn’t really matter in principle.

Each point here is a simulated person’s self-reported income quantile plotted against their actual income. As you can see while the data still follow the vague sigmoid shape, there is a lot of scatter in people’s “reported” quantiles compared to what it actually should be. For clarity, I added a colour code here which denotes the actual income decile each person belongs to. The darkest blue are the 10% lowest earners and the yellow bracket is the top earners.

Next I round people’s income to simulate their self-reported deciles. The point of this is to effectively transform the self-reports into the discrete 1-10 scale that we believe the actual survey respondents used (I still don’t know the methods and if people were allowed to score themselves a 5.5 for instance – but based on my reading of the paper the scale was discrete). I replot these self-reported deciles using the same format:

Obviously, the y-axis will now again cluster in these 10 discrete levels. But as you can see from the colour code, the “self-reported” decile is a poor reflection of the actual income bracket. While a relative majority (or plurality) of respondents scoring themselves 1 are indeed in the lowest decile, in this particular example some of them are actual top earners. The same applies to the other brackets. Respondents thinking of themselves as perfectly middle class in decile 5 actually come more or less equally from across the spectrum. Now, again this may be a bit excessive but bear with me for just a while longer…

What happens when we replot this with our now infamous line plots? Voilà, doesn’t this look hauntingly familiar?

The reason for this is that perceived income is a psychological measure. Or even just a real world measure. It is noisy. The take-home message here is: It does not matter what question you ask the participants. People aren’t computers. The corollary of that is that when data are noisy the line plot must necessarily produce this squeezing effect the original study reported.

Now you may rightly say, Sam, this noise simulation is excessive. That may well be. I’ll be the first to admit that there are probably not many billionaires who will rate themselves as belonging to the lowest decile. However, I suspect that people indeed have quite a few delusions about their actual income. This may be more likely to affect the people in the actual middle range perhaps. So I don’t think the example here is as extreme as it may appear at first glance. There are also many further complications, such as that these measures are probably heteroscedastic. The error by which individuals misjudge their actual income level in dollars is almost certainly greater for high earners. My example here is very simplistic in assuming the same amount of error across the whole population. This heteroscedasticity is likely to introduce further distortions – such as the stronger “underestimation” by top earners compared to the “overestimation” by low earners, i.e. what the original graph purports to show.

In any case, the amount of error you choose for the simulation doesn’t affect the qualitative pattern. If people are more accurate at judging their income decile, the amount of “squeezing” we see in these line plots will be less extreme. But it must be there. So any of these plots will necessarily contain a degree of this artifact and thus make it very difficult to ascertain if this misestimation claimed by the policy paper and the corresponding Guardian piece actually exists.

Finally, I want to reiterate this because it is important: What this shows is that people are bad at judging their income. There is error on this judgement, but crucially this is Gaussian (or semi-Gaussian) error. It is symmetric. Top earner Jeff may underestimate his own income because he has no real concept of how the other half** live. In contrast, billionaire Donny may overestimate his own wealth because of his fragile ego and he forgot how much money he wastes on fake tanning oil. The point is, every individual*** in our simulated population is equally likely to over- or under-estimate their income – however, even with such symmetric noise the final outcome of this binned line plot is that the bin averages trend towards the population mean.

*) Well, perhaps almost everything?

**) Or to be precise, how the other 99.999% live.

***) Actually because my simulation prevents negative incomes for the very lowest earners, the error must skew their perceived income upwards.

Matlab code for this simulation is available here.

It’s #$%&ing everywhere!

I can hear you singing in the distance
I can see you when I close my eyes
Once you were somewhere and now you’re everywhere


Superblood Wolfmoon – Pearl Jam

If you read my previous blog post you’ll know I have a particular relationship these days with regression to the mean – and binning artifacts in general. Our recent retraction of a study reminded me of this issue. Of course, I was generally aware of the concept, as I am sure are most quantitative scientists. But often the underlying issues are somewhat obscure, which is why I certainly didn’t immediately clock on to them in our past work. It took a collaborate group effort with serendipitous suggestions, much thinking and simulating and digging, and not least of all the tireless efforts of my PhD student Susanne Stoll to uncover the full extent of this issue in our published research. We also still maintain that this rabbit hole goes a lot deeper because there are numerous other studies that used similar analyses. They must by necessity contain the same error – hopefully the magnitude of the problem is less severe in most other studies so that their conclusions aren’t all completely spurious. However, we simply cannot know that until somebody investigates this empirically. There are several candidates out there where I think the problem is almost certainly big enough to invalidate the conclusions. I am not the data police and I am not going to run around arguing people’s conclusions are invalid without A) having concrete evidence and B) having talked to the authors personally first.

What I can do, however, is explain how to spot likely candidates of this problem. And you really don’t have far too look. We believe that this issue is ubiquitous in almost all pRF studies; specifically, it affects all pRF studies that use any kind of binning. There are cases where this is probably of no consequence – but people must at least be aware of the issue before it leads to false assumptions and thus erroneous conclusions. We hope to publish another article in the future that lays out this issue in some depth.

But it goes well beyond that. This isn’t a specific problem with pRF studies. Many years before that I had discussions with David Shanks about this subject when he was writing an article (also long since published) of how this artifact confounds many studies in the field of unconscious processing, something that certainly overlaps with my own research. Only last year there was an article arguing that the same artifact explains the Dunning-Kruger effect. And I am starting to see this issue literally everywhere1 now… Just the other day I saw this figure on one of my social media feeds:

This data visualisation makes a striking claim with very clear political implications: High income earners (and presumably very rich people in general) underestimate their wealth relative to society as a whole, while low income earners overestimate theirs. A great number of narratives can be spun about this depending on your own political inclinations. It doesn’t take much imagination to conjure up the ways this could be used to further a political agenda, be it a fierce progressive tax policy or a rabid pulling-yourself-up-by-your-own-bootstraps type of conservatism. I have no interest in getting into this discussion here. What interests me here is whether the claim is actually supported by the evidence.

There are a number of open questions here. I don’t know how “perceived income” is measured exactly2. It could theoretically be possible that some adjustments were made here to control for artifacts. However, taken at face value this looks almost like a textbook example of regression to the mean. Effectively, you have an independent variable, the individuals’ actual income levels. We can presumably regard this as a ground truth – an individual’s income is what it is. We then take a dependent variable, perceived income. It is probably safe to assume that this will correlate with actual income. However, this is not a perfect correlation because perfect correlations are generally meaningless (say correlating body height in inches and centimeters). Obviously, perceived income is a psychological measure that must depend on a whole number of extraneous factors. For one thing, people’s social networks aren’t completely random but we all live embedded in a social context. You will doubtless judge your wealth relative to the people you mostly interact with. Another source of misestimation could be how this perception is measured. I don’t know how that was done here in detail but people were apparently asked to self-rate their assumed income decile. We can expect psychological factors at play that make people unlikely to put themselves in the lowest or highest scores on such a scale. There are many other factors at play but that’s not really important. The point is that we can safely assume that people are relatively bad at judging their true income relative to the whole of society.

But to hell with it, let’s just disregard all that. Instead, let us assume that people are actually perfectly accurate at judging their own income relative to society. Let’s simulate this scenario3. First we draw 10,000 people a Gaussian distribution of actual incomes. This distribution has a mean of $60,000 and a standard deviation of $20,000 – all in fictitious dollars which we assume our fictitious country uses. We assume these are based on people’s paychecks so there is no error4 on this independent variable at all. I use the absolute values to ensure that there is no negative income. The figure below shows the actual objective income for each (simulated) person on the x-axis. The y-axis is just random scatter for visualisation – it has no other significance. The colour code denotes the income bracket (decile) each person belongs to.

Next I simulate perceived income deciles for these fictitious people. To do this we need to do some rescaling to get everyone on the scale 1-10, with 10 being highest top earner. However – and this is important – as per our (certainly false) assumption above, perceived income is perfectly correlated with actual income. It is a simple transformation to rescale it. Now, what happens when you average the perceived income in each of these decile brackets like that graph above did? I do that below, using the same formatting as the original graph:

I will leave it to you, gentle reader, to determine how this compares to the original figure. Why is this happening? It’s simple really when you think about it: Take the highest income bracket. This ranges widely from high-but-reasonable to filthy-more-money-than-you-could-ever-spend-in-a-lifetime rich. This is not a symmetric distribution. The summary statistics of these binned data will be heavily skewed. Its mean/median will be biased downward for the top income brackets and upwards for the low income brackets. Only the income decile near the centre will be approximately symmetric and thus produce an unbiased estimate. Or to put it in simpler terms: the left column simply labels the deciles brackets. The only data here is in the right column and all this plot really shows is that the incomes have a Gaussian-like distribution. This has nothing to do with perceptions of income whatsoever.

In discussions I’ve had this all still confuses some people. So I added another illustration. In the graph below I plot a normal distribution. The coloured bands denote the approximated deciles. The white dots on the X-axis show the mean for each decile. The distance between these dots is obviously not equal. They all trend to be closer to the population mean (zero) than to the middle of their respective bands. This bias is present for all deciles except perhaps the most central ones. However, it is most extreme for the outermost deciles because these have the most asymmetric distributions. This is exactly what the income plots above are showing. It doesn’t matter whether we are looking at actual or perceived income. It doesn’t matter at all if there is error on those measures or not. All that matters is the distribution of the data.

Now, as I already said, I haven’t seen the detailed methodology of that original survey. If the analysis made any attempt to mathematically correct for this problem then I’ll stand corrected5. However, even in that case, the general statistical issue is extremely wide-spread and this serves as a perfect example of how binning can result in widely erroneous conclusions. It also illustrates the importance of this issue. The same problem relates to pRF tuning widths and stimulus preferences and whatnot – but that is frankly of limited importance. But things like these income statistics could have considerable social implications. What this shows to me is two-fold: First, please be careful when you do data analysis. Whenever possible, feed some simulated data to your analysis to see if it behaves as you think it should. Second, binning sucks. I see it effing everywhere now and I feel like I haven’t slept in months6

Superbloodmoon eclipse
Photo by Dave O’Brien, May 2021
  1. A very similar thing happened when I first learned about heteroscedasticity. I kept seeing it in all plots then as well – and I still do…
  2. Many thanks to Susanne Stoll for digging up the source for these data. I didn’t see much in terms of actual methods details here but I also didn’t really look too hard. Via Twitter I also discovered the corresponding Guardian piece which contains the original graph.
  3. Matlab code for this example is available here. I still don’t really do R. Can’t teach an old dog new tricks or whatever…
  4. There may be some error with a self-report measure of people’s actual income although this error is perhaps low – either way we do not need to assume any error here at all.
  5. Somehow I doubt it but I’d be very happy to be wrong.
  6. There could however be other reasons for that…

If this post confused you, there is now a follow-up post to confuse you even more… 🙂

When the hole changes the pigeon

or How innocent assumptions can lead to wrong conclusions

I promised you a (neuro)science post. Don’t let the title mislead you into thinking we’re talking about world affairs and societal ills again. While pigeonholing is directly related to polarised politics or social media, for once this is not what this post is about. Rather, it is about a common error in data analysis. While there have been numerous expositions about similar issues throughout the decades – as we’ve learned the hard way, it is a surprisingly easy mistake to make. A lay summary and some wider musings on the scientific process was published by Benjamin de Haas. A scientific article by Susanne Stoll laying out this problem in more detail is currently available as a preprint.

Pigeonholing (Source: https://commons.wikimedia.org/wiki/File:TooManyPigeons.jpg)

Data binning

In science you often end up with large data sets, with hundreds or thousands of individual observations subject to considerable variance. For instance, in my own field of retinotopic population receptive field (pRF) mapping, a given visual brain area may have a few thousand recording sites, and each has a receptive field position. There are many other scenarios of course. It could be neural firing, or galvanic skin responses, or eye positions recorded at different time points. Or it could be hundreds or thousands of trials in a psychophysics experiment etc. I will talk about pRF mapping because this is where we recently encountered the problem and I am going to describe how it has affected our own findings – however, you may come across the same issue in many guises.

Imagine that we want to test how pRFs move around when you attend to a particular visual field location. I deliberately use this example because it is precisely what a bunch of published pRF studies did, including one of ours. There is some evidence that selective attention shifts the position of neuronal receptive fields, so it is not far-fetched that it might shift pRFs in fMRI experiments also. Our study for instance investigated whether pRFs shift when participants are engaged in a demanding (“high load”) task at fixation, compared to a baseline condition where they only need to detect a simple colour change of the fixation target (“low load”). Indeed, we found that across many visual areas pRFs shifted outwards (i.e. away from fixation). This suggested to us that the retinotopic map reorganises to reflect a kind of tunnel vision when participants are focussed on the central task.

What would be a good way to quantify such map reorganisation? One simple way might be to plot each pRF in the visual field with a vector showing how it is shifted under the attentional manipulation. In the graph below, each dot shows a pRF location under the attentional condition, and the line shows how it has moved away from baseline. Since there is a large number pRFs, many of which are affected by measurement noise or other errors, these plots can be cluttered and confusing:

Plotting shift of each pRF in the attention condition relative to baseline. Each dot shows where a pRF landed under the attentional manipulation, and the line shows how it has shifted away from baseline. This plot is a hellishly confusing mess.

Clearly, we need to do something to tidy up this mess. So we take the data from the baseline condition (in pRF studies, this would normally be attending to a simple colour change at fixation) and divide the visual field up into a number of smaller segments, each of which contains some pRFs. We then calculate the mean position of the pRFs from each segment under the attentional manipulation. Effectively, we summarise the shift from baseline for each segment:

We divide the visual field into segments based on the pRF data from the baseline condition and then plot the mean shift in the experimental condition for each segment. A much clearer graph that suggests some very substantial shifts…

This produces a much clearer plot that suggests some interesting, systematic changes in the visual field representation under attention. Surely, this is compelling evidence that pRFs are affected by this manipulation?

False assumptions

Unfortunately it is not1. The mistake here is to assume that there is no noise in the baseline measure that was used to divide up the data in the first place. If our baseline pRF map were a perfect measure of the visual field representation, then this would have been fine. However, like most data, pRF estimates are variable and subject to many sources of error. The misestimation is also unlikely to be perfectly symmetric – for example, there are several reasons why it is more likely that a pRF will be estimated closer to central vision than in the periphery. This means there could be complex and non-linear error patterns that are very difficult to predict.

The data I showed in these figures are in fact not from an attentional manipulation at all. Rather, they come from a replication experiment where we simply measured a person’s pRF maps twice over the course of several months. One thing we do know is that pRF measurements are quite robust, stable over time, and even similar between scanners with different magnetic field strengths. What this means is that any shifts we found are most likely due to noise. They are completely artifactual.

When you think about it, this error is really quite obvious: sorting observations into clear categories can only be valid if you can be confident in the continuous measure on which you base these categories. Pigeonholing can only work if you can be sure into which hole each pigeon belongs. This error is also hardly new. It has been described in numerous forms as regression to the mean and it rears its ugly head every few years in different fields. It is also related to circular inference, which has already caused a stir in cognitive and social neuroscience a few years ago. Perhaps the reason for this is that it is a damn easy mistake to make – but that doesn’t make the face-palming moment any less frustrating.

It is not difficult to correct this error. In the plot below, I used an independent map from yet another, third pRF mapping session to divide up the visual field. Then I calculated how the pRFs in each visual field segment shifted on average between the two experimental sessions. While some shift vectors remain, they are considerably smaller than in the earlier graph. Again, keep in mind that these are simple replication data and we would not really expect any systematic shifts. There certainly does not seem to be a very obvious pattern here – perhaps there is a bit of a clockwise shift in the right visual hemifield but that breaks down in the left. Either way, this analysis gives us an estimate of how much variability there may be in this measurement.

We use an independent map to divide the visual field into segments. Then we calculate the mean position for each segment in the baseline and the experimental condition, and work out the shift vector between them. For each segment, this plot shows that vector. This plot loses some information, but it shows how much and into which direction pRFs in each segment shifted on average.

This approach of using a third, independent map loses some information because the vectors only tell you the direction and magnitude of the shifts, not exactly where the pRFs started from and where they end up. Often the magnitude and direction of the shift is all we really need to know. However, when the exact position is crucial we could use other approaches. We will explore this in greater depth in upcoming publications.

On the bright side, the example I picked here is probably extreme because I didn’t restrict these plots to a particular region of interest but used all supra-threshold voxels in the occipital cortex. A more restricted analysis would remove some of that noise – but the problem nevertheless remains. How much it skews the findings depends very much on how noisy the data are. Data tend to be less noisy in early visual cortex than in higher-level brain regions, which is where people usually find the most dramatic pRF shifts…

Correcting the literature

It is so easy to make this mistake that you can find it all over the pRF literature. Clearly, neither authors nor reviewers have given it much thought. It is definitely not confined to studies of visual attention, although this is how we stumbled across it. It could be a comparison between different analysis methods or stimulus protocols. It could be studies measuring the plasticity of retinotopic maps after visual field loss. Ironically, it could even be studies that investigate the potential artifacts when mapping such plasticity incorrectly. It is not restricted to the kinds of plots I showed here but should affect any form of binning, including the binning into eccentricity bins that is most common in the literature. We suspect the problem is also pervasive in many other fields or in studies using other techniques. Only a few years ago a similar issue was described by David Shanks in the context of studying unconscious processing. It is also related to warnings you may occasionally hear about using median splits – really just a simpler version of the same approach.

I cannot tell you if the findings from other studies that made this error are spurious. To know that we would need access to the data and reanalyse these studies. Many of them were published before data and code sharing was relatively common2. Moreover, you really need to have a validation dataset, like the replication data in my example figures here. The diversity of analysis pipelines and experimental designs makes this very complex – no two of these studies are alike. The error distributions may also vary between different studies, so ideally we need replication datasets for each study.

In any case, as far as our attentional load study is concerned, after reanalysing these data with unbiased methods, we found little evidence of the effects we published originally. While there is still a hint of pRF shifts, these are no longer statistically significant. As painful as this is, we therefore retracted that finding from the scientific record. There is a great stigma associated with retraction, because of the shady circumstances under which it often happens. But to err is human – and this is part of the scientific method. As I said many times before, science is self-correcting but that is not some magical process. Science doesn’t just happen, it requires actual scientists to do the work. While it can be painful to realise that your interpretation of your data was wrong, this does not diminish the value of this original work3 – if anything this work served an important purpose by revealing the problem to us.

We mostly stumbled across this problem by accident. Susanne Stoll and Elisa Infanti conducted a more complex pRF experiment on attention and found that the purported pRF shifts in all experimental conditions were suspiciously similar (you can see this in an early conference poster here). It took us many months of digging, running endless simulations, complex reanalyses, and sometimes heated arguments before we cracked that particular nut. The problem may seem really obvious now – it sure as hell wasn’t before all that.

This is why this erroneous practice appears to be widespread in this literature and may have skewed the findings of many other published studies. This does not mean that all these findings are false but it should serve as a warning. Ideally, other researchers will also revisit their own findings but whether or not they do so is frankly up to them. Reviewers will hopefully be more aware of the issue in future. People might question the validity of some of these findings in the absence of any reanalysis. But in the end, it doesn’t matter all that much which individual findings hold up and which don’t4.

Check your assumptions

I am personally more interested in taking this whole field forward. This issue is not confined to the scenario I described here. pRF analysis is often quite complex. So are many other studies in cognitive neuroscience and, of course, in many other fields as well. Flexibility in study designs and analysis approaches is not a bad thing – it is in fact essential for addressing scientific questions that we can adapt our experimental designs.

But what this story shows very clearly is the importance of checking our assumptions. This is all the more important when using the complex methods that are ubiquitous in our field. As cognitive neuroscience matures, it is critical that we adopt good practices in ensuring the validity of our methods. In the computational and software development sectors, it is to my knowledge commonplace to test algorithms on conditions where the ground truth is known, such as random and/or simulated data.

This idea is probably not even new to most people and it certainly isn’t to me. During my PhD there was a researcher in the lab who had concocted a pretty complicated analysis of single-cell electrophysiology recordings. It involved lots of summarising and recentering of neuronal tuning functions to produce the final outputs. Neither I nor our supervisor really followed every step of this procedure based only on our colleague’s description – it was just too complex. But eventually we suspected that something might be off and so we fed random numbers to the algorithm – lo and behold the results were a picture perfect reproduction of the purported “experimental” results. Since then, I have simulated the results of my analyses a few other times – for example, when I first started with pRF modelling or when I developed new techniques for measuring psychophysical quantities.

This latest episode taught me that we must do this much more systematically. For any new design, we should conduct control analyses to check how it behaves with data for which the ground truth is known. It can reveal statistical artifacts that might hide inside the algorithm but also help you determine the method’s sensitivity and thus allow you to conduct power calculations. Ideally, we would do that for every new experiment even if it uses a standard design. I realise that this may not always be feasible – but in that case there should be a justification why it is unnecessary.

Because what this really boils down to is simply good science. When you use a method without checking that it works as intended, you are effectively doing a study without a control condition – quite possibly the original sin of science.

Acknowlegdements

In conclusion, I quickly want to thank several people: First of all, Susanne Stoll deserves major credit for tirelessly pursuing this issue in great detail over the past two years with countless reanalyses and simulations. Many of these won’t ever see the light of day but helped us wrap our heads around what is going on here. I want to thank Elisa Infanti for her input and in particular the suggestion of running the analysis on random data – without this we might never have realised how deep this rabbit hole goes. I also want to acknowledge the patience and understanding of our co-authors on the attentional load study, Geraint Rees and Elaine Anderson, for helping us deal with all the stages of grief associated with this. Lastly, I want to thank Benjamin de Haas, the first author of that study for honourably doing the right thing. A lesser man would have simply booked a press conference at Current Biology Total Landscaping instead to say it’s all fake news and announce a legal challenge5.

Footnotes:

  1. The sheer magnitude of some of these shifts may also be scientifically implausible, an issue I’ve repeatedly discussed on this blog already. Similar shifts have however been reported in the literature – another clue that perhaps something is awry in these studies…
  2. Not that data sharing is enormously common even now.
  3. It is also a solid data set with a fairly large number of participants. We’ve based our canonical hemodynamic response function on the data collected for this study – there is no reason to stop using this irrespective of whether the main claims are correct or not.
  4. Although it sure would be nice to know, wouldn’t it?
  5. Did you really think I’d make it through a blog post without making any comment like this?

Removing the domain

As you may have noticed, I haven’t been posting very often in the last years – and when I did, they are usually short posts. I simply do not have as much time to devote to this blog as I used to, both due to a massively increased workload and for personal reasons. I am not saying that I will stop writing blog posts altogether – please be assured that I’ll definitely continue this site. As a matter of fact, I have some ideas for future posts and *drum roll* some of them may even be related to *gasp* cognitive neuroscience! :O

However, I simply don’t update this blog often enough to justify the expense of having to pay for the neuroneurotic.net domain. So as of December 2021, this site will no longer have a top level domain (you can still find it at neuroneurotic.wordpress.com). Moreover, the site will have ads again – I hope these won’t be too disruptive to your enjoyment of my wonderfully crafted pieces of internet poetry.

Implausible hypotheses

A day may come when I will stop talking about conspiracy theories again, but it is not this day. There is probably nothing new about conspiracy theories – they have doubtless been with us since our evolutionary ancestors gained sentience – but I fear that they are a particularly troublesome scourge of our modern society. The global connectivity of the internet and social media enable the spread of this misinformation pandemic in unprecedented ways, just as our physical connectivity facilitate the spread of an actual virus. Also like an actual virus, they can be extremely dangerous and destructive.

But fear not, I will try to move this back to being a blog on neuroscience eventually :P. Today’s post is about some tools we can use to determine the plausibility of a hypothesis. I have written about this before. Science is all about formulating hypotheses and putting them to the test. Not all hypotheses are created equal however – some hypotheses are so obviously true they hardly need testing while others are so implausible that testing them is pointless. Using conspiracy theories as an example, here I will list some tools I use to spot what I consider to be highly implausible hypotheses. I think this is a perfect example, because despite the name conspiracy theories are not actually scientific theories at all – they are in fact conspiracy hypotheses and most are pretty damn implausible.

This is not meant to be an exhaustive list. There may be other things you can think of that help you determine that a claim is implausible, for example Carl Sagan’s chapter on The Fine Art of Baloney Detection. You can also relate much of this back to common logical fallacies. My post merely lists a few basic features that I frequently encounter out there in the wild. Perhaps you’ll find this list useful in your own daily face-palming experiences.

The Bond Villain

Is a central feature to this purported plot a powerful billionaire with infinite funding and unlimited resources and power at their disposal? Do they have a convoluted plan that just smells evil, such as killing off large parts of the world population for the “common good”? You know, like injecting them with vaccines that sterilise them?

The House of Cards

Is the convoluted plan so complicated and carefully crafted numerous steps in advance where each little event has to fall in place just right in order for it to work? You know, like using 5G tech to weaken people’s immune system so it starts a global pandemic with a virus you created in your secret lab so that everyone happily gets injected with your vaccine which will contain nanoscale microchips but not with any other vaccine that others might have developed in the meantime? And obviously you know your vaccine will work against the virus because you could test it thoroughly without anybody else finding out about it?

The Future Tech

Does the plan involve some technology you’ve first heard of on Star Trek or Doctor Who? Is a respiratory illness caused by mobile phone technology? Is someone injecting nanoscale computer chips with a vaccine? Is there brain scanning technology with spatial and temporal resolution that would render all of my research completely obsolete?

The Red Pill

Have you been living a lie all your life? Will embracing the idea mean that you have awoken and/or finally see what’s right in front of you? Are most other people brainwashed sheeple? Did a YouTube video by someone who’ve never heard of finally open your eyes to reality?

The Dull Razorblade

Is the idea built on multiple factors that are not actually necessary to explain the events that unfurled? Was a virus “obviously” created in a lab even though countless viruses occur naturally? Are the odds that what they claim happened more likely than that the same thing happened by chance? Is the most obvious explanation for why the motif of Orion’s Belt appears throughout history and the world because aliens visited from Rigel 7 and not because it’s one of the most recognisable constellations in the night sky?

The World Government

Does it require the deep cooperation of most governments in the world whilst they squabble and vehemently disagree in the public limelight? Is the nefarious scheme perpetrated by the United Nations, which are famous for always agreeing, being efficient, and never having any conflict? (Note that occasionally it may only be the European Union rather than the UN).

The Flawed Explanation

Are the individual hypotheses that form the bigger conspiracy mutually exclusive? Is it based on current geography or environmental conditions even though it happened hundreds, thousands, or millions of years in the past? Does it involve connecting dots on the Mercator world map in straight lines which would actually not be straight on the globe or any other map projection?

The Unlikely Saint

Is the person most criticised, ridiculed, or reviled by the mainstream media in fact the good guy? Imagine, if you will, a world leader who is a former intelligence operative and spy master and who has invaded several sovereign countries. Is he falsely accused of assassinating his enemies and pursuing a cold political plan and actually just a friendly, misunderstood teddy bear? Or perhaps that demagogue, who riles the masses with hateful rhetoric and who has committed acts of corruption in broad daylight, is in fact defending us from evil puppy eating monsters? The CEO of a fossil fuel company in truth protects us from all those environmentalist hippies in centre-right governments who want to poison us with clean air and their utopian idealism of a habitable planet?

The Vast Network

Is everyone in on it? All scientists including all authors, editors and peer reviewers and all the technical support staff and administrators, all influential political leaders and their aides, all medical doctors and nurses and pharmacists, all engineers and all school teachers are involved in this complex scheme to fool the unwashed masses even though there has never been a credible whistleblower? Have they remained silent even though the Moon Landing was hoaxed half a century ago? Do all scientists working on a vaccine for widespread disease actually want to inject you with nanoscale microchips? Is there fortunately a YouTuber whose videos finally lay bare this outrageous, evil scheme?

The Competent Masterminds

Does it assume an immense level of competence and skill on the part of political leaders and organisations to execute their nefarious convoluted plans in the face of clear evidence to the contrary? Are they all just acting like disorganised buffoons to fool us?

The Insincere Questions

Is the framer of the idea “merely asking questions”? Do they simply want you to “think for yourself”? Does thinking for yourself in fact mean agreeing with that person? Do they ask questions about who funded some scientific research without any understanding of how scientific research is actually funded? Are they “not saying it was aliens” but it is obvious that is was in fact aliens?

The Unfalsifiable Claims

Is there no empirical evidence that could prove the claim wrong? Is this argument going in circles or are the goalposts shifted? Is a fact-checking website untrustworthy because it is “obviously part of the conspiracy”, even though you can directly check their source material which is of course also all fabricated? Is the idea based on some claim that has been shown to be a fraud, and the fraudster has been discredited even by his co-authors, but naturally this just part of an even bigger cover-up and a smear campaign? Can only the purveyor of this conspiracy theory be trusted?

The Torrent of Praise

Is the comment section under this YouTube video or Facebook post a long list of people praising and commending the poster for their truth-telling and use of “evidence”? Do most of these commenters have numbers in their name? Do they have profile pictures that look strangely akin to stock photos? Do any of the comments concur with the original post by adding some anecdote that sounds like an episode of the X-Files?

The Puppet Masters

Does it mention the Elders or Zion, the Illuminati, the Knights Templar, or some similar sounding, secret organisation? Or perhaps the Deep State?

The Flat Earth

Does it blatantly deny reality?

Dear Co-conspirators

I would like to lodge a complaint. Ever since I was admitted to the cabal over a decade ago I have been waiting for my paycheck – but thus far the immense riches I was promised by the Science Illuminati have yet to materialise. If I had known sooner how much money a CEO in a multinational fossil fuel corporation makes, I’d have pursued that truthtelling career instead of pretending that air pollution is bad for your health and blowing unprecedented amounts of carbon dioxide into the atmosphere could have any consequences on the global climate.

I am also still waiting for the keys to the Ivory Tower. The Lords of Big Vaccine explicitly told us at the induction that these would be forthcoming within days of pledging allegiance to “conventional medicine”. Nobody ever died of the measles, smallpox, or polio. When do I finally get to use the mind-control chips in vaccines? Also, when do I get the antidote to the vaccines I was given before I was anointed as a scientific acolyte?

Now that the roll-out of 5G is well underway, I also hope that you will soon put this to some good use instead of simply causing pandemics with it. Rather we should use it to erase the memories of all those witless fools out there before the secret gets out. I have overheard people suggest they should “follow the money” when looking at scientific research. We really don’t want them to find out how deeply involved funding agencies are in how scientists decide what research they do, and how they have been falling all over themselves just to give us money.

Most importantly, I don’t know why I continue to publish articles in peer-reviewed journals. Why do I keep having these mind-numbing battles with Nitpicker #2? As we all know, this isn’t real “research”. The truths about the universe are best discovered through quick Google searches, our elderly relatives’ Facebook posts, and watching random dudes on YouTube. I understand that we need to keep up the illusion of a body of scientific knowledge and therefore we should publish lots of papers. But surely in that case we should make it easier to do so rather than throwing all those obstacles in our paths, like quibbling about statistics or discussing confounds. Is this why you created all those journals that keep emailing me to publish my eminent work in their inaugural issue?

I’ll be awaiting your reply urgently. If I don’t see all those millions of dollars soon, I might start to think that this conspiracy isn’t working out for me, and I might need to go public with what I know. Don’t think you can silence me by forcing me to wear a face mask!

Hallowed be the Chemtrail,
Sam

Dollarnote_siegel

I was wrong…

It has been almost a year since I last posted on this blog. I apologise for this hiatus. I’m afraid it’ll continue as it will probably be even longer before my next post. I simply don’t have the time for the blog these days. But in a brief lull in activities I decided to write this well-overdue post. No, this is not yet another neuroscientist wheeling out his Dunning-Krugerism to make a simplistic and probably dead-wrong (no pun intended) model of the CoViD-19 pandemic, and I certainly won’t be talking about what the governments are doing right or wrong in handling this dreadful situation. But the post is at least moderately related to the pandemic and to this very issue of expertise, and more broadly to current world events.

Years ago, I was locked in an extended debate with parapsychology researchers about the evidence for so-called “psi” effects (precognition, telepathy, and the like). What made matters worse, I made the crucial mistake of also engaging in discussion with some of the social media followers of these researchers. I have since gotten a little wiser and learned about the futility and sanity-destroying nature of social media (but not before going through the pain of experiencing the horrors of social media in other contexts, not least of all Brexitrump). I now try my best (but sometimes still fail) to stay away from this shit and all the outrage junkies and drama royalty. Perhaps I just got tired…

Anyway, in the course of this discussion about “psi” research, I uttered following phrase (or at least this is it paraphrased – I’m too lazy to look it up):

To be a scientist, is to be a skeptic.

This statement was based on the notions of scientific scrutiny, objectively weighing evidence for or against a proposition, giving the null hypothesis a chance, and never to take anybody’s word for granted. It was driven by an idealistic and quite possibly naive belief in the scientific method and the excitement about scientific thinking in some popular circles. But I was wrong.

Taken on their own, none of these things are wrong of course. It is true that scientists should challenge dogma and widely-held assumptions. We should be skeptical of scientific claims and the same level of scrutiny should be applied to evidence confirming our predictions as to those that seem to refute them. Arguments from authority are logically fallacious and we shouldn’t just take somebody at their word simply because of their expertise. As fallible human beings we scientists can fool ourselves into believing something that actually isn’t true, regardless of expertise, and perhaps at times expertise can even result in deeply entrenched viewpoints, so it pays to keep an open mind.

But there’s too much of a good thing. Too much skepticism will lead you astray. There is a saying, that has been (mis-)attributed to various people in various forms. I don’t know who first said it and I don’t much care either:

It pays to keep an open mind, but not so open that your brains fall out.

Taken at face value, this may seem out-of-place. Isn’t an open mind the exact opposite of being skeptical? Isn’t the purpose of this quote precisely to tell people not to believe just about any nonsense? Yes and no. If you spend any time reading and listening to conspiracy theories – and I strongly advise you not to – then you’ll find that the admonition to keep an open mind is actually a major hallmark of this misguided and dangerous ideology. I’ve seen memes making the rounds that most people are “sheeple” and only those who have awoken to the truth see the world as it really is, and lots of other such crap. Conspiracy theorists do really keep a very open mind indeed.

A belief in wild-eyed conspiracies goes hand-in-hand with the utmost skepticism of anything that smells even remotely like the status quo or our current knowledge. It involves being open to every explanation out there – except to the one thing that is most likely true. It is the Trust No One philosophy. When I was a teenager, I enjoyed the X-Files. One of the my favourite video games, Deus Ex, was strongly inspired by a whole range of conspiracy theories. It is great entertainment but some people seem to take this message a little too much to heart. If you look into the plot of Deus Ex, you’ll find some haunting parallels to actual world events, from terrorist attacks on New York City to the pandemic we are experiencing now. Ironically, one could even spin conspiracies about the game itself for that reason.

dxcover

Conspiracy theories are very much in fashion right now, probably helped by the fact that there is currently a lunatic in the White House who is actively promoting them. It would be all fun and games, if it were only about UFOs, Ancient Aliens, Flat Earth, or the yeti. Or even about the idea that us dogmatic scientists want to suppress the “truth” that precognition is a thing*. But it isn’t just that.

From the origins of the novel coronavirus disease over vaccinations to climate change, we are constantly bombarded by conspiratorial thinking and its consequences. People apparently set fire to 5G radio masts because of this. Trust in authorities and experts has been eroded all over the globe. The internet seems to facilitate the spread of these ideas so they become far more influential than they would have been in past decades –  sometimes to very damaging effects.

Can we even blame people? It does become increasingly harder to trust anything or anybody. I have seen first-hand how many news media are more interested in publishing articles to make a political point than in providing factual accuracy. This may not even be deliberate; journalists work to tight deadlines and they are a struggling industry trying to keep financially afloat. Revelations about the origins of the Iraq War and scandals of collusion and election meddling, some of which may well be true conspiracies while others may be liberal pipe dreams (and many may fall into a grey area in between), don’t help to restore public trust. And of course public trust in science isn’t helped by the Replication Crisis**.

Science isn’t just about being skeptical

Sure, science is about challenging assumptions but it is also about weighing all available evidence. The challenging of assumptions we see in conspiracies is all too often cherry-picking. Science is also about the principle of parsimony and it requires us to determine the plausibility of claims. Crucially, it is also about acknowledging all the things we don’t know. That last point includes recognising that, you know, perhaps an expert in an area actually does occasionally know more about it than you.

No, you shouldn’t just believe anything someone says merely because they have PhD in the topic. And I honestly don’t know if expertise is really all that crucial in replicating social priming effects – this is for me where the issues with plausibility kick in. But knowing something about a topic gives experts insights that will elude an outsider and it would serve us well to listen to them. They should certainly have to justify and validate their claims – you shouldn’t just take their word as gospel. But don’t delude yourself into thinking you’ve uncovered “the Truth” by disbelieving everybody else. If I’ve learned anything from doing research, it is that the greatest delusion is when you think you’ve actually understood anything.

I have observed a worrying trend among some otherwise rather sensible people to brush aside criticism of conspiracy theories as smugness or over-confidence. This manifests in insinuations like these:

  • Of course, vaccines don’t cause autism, but perhaps this just distracts from the fact that they could be dangerous after all?
  • Of course, 5G doesn’t give people coronavirus but have governments used this pandemic as an opportunity to roll out 5G tech?
  • Of course, the CoViD-19 wasn’t manufactured in a Chinese lab, but researchers from the Wuhan Institute of Virology published studies on such coronaviruses and isn’t it possible that they already had the virus and it escaped the lab due to negligence or was even set loose on purpose?

Conspiracy theories are always dealing in possibilities. Of course, they require ardent believers to promote their tinfoil hat ideas. But they also feed on people like us, people with a somewhat skeptical and inquisitive mind who every so often fall prey to their own cognitive biases. Of course, all of these statements are possible – but that’s not the point. Science is not about what is possible but what is probable. Probabilities change as the evidence accumulates.

How plausible is the claim and even if it is plausible, is it more probable than other explanations or scenarios? Even if there were evidence that companies took advantage of the pandemic to roll out 5G (you know, this thing that has been debated for years and which had been planned ages before anyone even knew what a coronavirus is), wouldn’t it make sense to do this at a time when there is an unprecedented need of a world population in lockdown to have reliable and sophisticated mobile internet? Also, so fucking what? What concrete reason is it why you think 5G is a problem? Or are you just talking about the same itchy feeling people in past ages had about the internet, television, radio, and doubtless at some point also about books?

Let us for a moment ignore the blatant racism and various other factors that make this idea actually quite unlikely and accept the possibility that the coronavirus escaped from a lab in Wuhan. Why shouldn’t there be a lab studying animal-to-human transmission of viruses that have the potential for causing pandemics, especially since we already know this happened with numerous illnesses before and researchers have already warned years ago that such a coronavirus pandemic was coming? Doesn’t it make sense to study this at a place where this is likely to occur? What is more likely, that the thing that we know happens happened or that someone left a jar open by accident and let the virus escape the lab? How do you think the virus got in the lab in the first place? What makes it more likely that it escaped a lab than that it originated on a market where wild exotic animals are being consumed?

There is also an odd irony about some of these ideas. Anti-vaxxers seem somewhat quiet these days now that everybody is clamouring for a vaccine for CoViD-19. Perhaps that’s to be expected. But while there is literally no evidence that widely used vaccines are making you sick (at least beyond that weakened form of creating an immune response that makes you unsusceptible to the actually disease anyway) there are very good reasons to ask whether a new drug or treatment is safe. This is why researchers keep reminding us that a vaccine is still at least a year away and why I find recent suggestions one could become available even this September somewhat concerning. It is certainly great that so much work is put into fighting this pandemic and if human usage can begin soon that is obviously good news – but before we have wide global use perhaps we should ensure that this vaccine is actually safe. The plus side is, in contrast to anti-vaxxers, vaccine scientists are actually concerned about people’s health and well-being.

The real conspiracy

Ask yourself who stands to gain if you believe a claim, whether it is a scientific finding, an official government statement, or a conspiracy. Most conspiracy theories further somebody’s agenda. It could help somebody’s reelection or bring them political influence to erode trust in certain organisations or professions, but it could also be much simpler than that: clickbait makes serious money, and some people actually sow disinformation simply for the fun of it. We can be sure of one real conspiracy: the industry behind conspiracy theories.

 

* Still waiting for my paycheck for being in the pocket of Big Second-Law-of-Thermodynamics…

** This is no reason not to improve the replicability and transparency of scientific research – quite the opposite!

Imaging

Inspired by my Twitter feed for the past few weeks, and in particular this tweet in which I suggested science should be about the science not about the scientist, the revelation that there is such a thing as “negotiated submissions“, the debate on whether or not people should sign their peer reviews, and last but not least my inability to spell simple words, I give you my most embarrassing blog post yet. To the tune of a famous John Lennon song:

Imaging there’s no tenure
It’s easy if you try
No self-promotion needed
No reviewer makes you cry

Imaging all researchers
Searching for the truth

Imaging there’s no Twitter
It isn’t hard to do
Nothing to kill or die for
And no arguments, too

Imaging all researchers
Living life in peace

You may say I’m a procrastinator
That I should apply for grants
I should be preparing lectures
And write no stupid rants

Imaging no more authors
Results published as they came
No need for impact factors
Nobody cares about fame

Imaging all researchers
Sharing all data

You may say that I’m a dreamer
But I’m not the only one
I hope someday you’ll join us
And science will again be fun

By analogy

In June 2016, the United Kingdom carried out a little study to test the hypothesis that it is the “will of the people” that the country should leave the European Union. The result favoured the Leave hypothesis, albeit with a really small effect size (1.89%). This finding came as a surprise to many but as so often it is the most surprising results that have the most impact.

Accusations of p-hacking soon emerged. Not only was there a clear sampling bias but data thugs suggested that the results might have even been obtained by fraud. Nevertheless, the original publication was never retracted. What’s wrong with inflating the results a bit? Massaging data to fit a theory is not the worst sin! The history of science is rich with errors. Such studies can be of value if they offer new clarity in looking at phenomena.

In fact, the 2016 study did offer a lot of new ways to look at the situation. There was a fair amount of HARKing about what the result of the 2016 study actually meant. Prior to conducting the study, at conferences and in seminars the proponents of the Leave hypotheses kept talking about the UK having a relationship with the EU like Norway and Switzerland. Yet somehow in the eventual publication of the 2016 findings, the authors had changed their tune. Now they professed that their hypothesis was obviously always that the UK should leave the EU without any deal whatsoever.

Sceptics of the Leave hypothesis pointed out various problems with this idea. For one thing, leaving the EU without a deal wasn’t a very plausible hypothesis. There were thousands of little factors to be considered and it seemed unlikely that this was really the will of the people. And of course, the nitpickers also said that “barely more than half” could never be considered the “will of the people”.

Almost immediately, there were calls for a replication to confirm that the “will of the people” really was what believers in the Leave-without-a-deal hypothesis claimed. At first, these voices came only from a ragtag band of second stringers – but as time went on and more and more people realised just how implausible the Leave hypothesis really was, their numbers grew.

Leavers however firmly disagreed. To them, a direct replication was meaningless. That was odd for some of them had openly admitted they wanted to p-hack the hell out of this thing until they got the result they wanted. But now they claimed that there had by now been several conceptual replications of the 2016 results, first in the United States and then later also Brazil, and some might argue even in Italy, Hungary, and Poland. Also in several other European countries similar results were found, albeit not statistically significant. Based on all this evidence, a meta-analysis surely supported the general hypothesis?

But the replicators weren’t dissuaded. The more radical among these methodological terrorists posited that any study in which the experimental design isn’t clearly defined and preregistered prior to data collection is inherently exploratory, and cannot be used to test any hypotheses. They instead called for a preregistered replication, ideally a Registered Report where the methods are peer-reviewed and the manuscript is in principle accepted for publication before data collection even commences. The fact that the 2016 study didn’t do this was just one of its many problems. But people still cite it simply because of its novelty. The replicators also pointed to other research fields, like Switzerland and Ireland, where this approach has long been used very successfully.

As an added twist, it turns out that nobody actually read the background literature. The 2016 study was already a replication attempt of previous findings from 1975. Sure, some people had vaguely heard about this earlier study. Everybody who has ever been to a conference knows that there is always one white-haired emeritus professor in the audience who will shout out “But I already did this four decades ago!”. But nobody really bothered to read this original study until now. It found an enormous result in the opposite direction, 17.23% in favour of remaining in Europe. As some commentators suggested, the population at large may have changed over the past four decades or that there may have been subtle but important differences in the methodology. What if leaving Europe then meant something different to what it means now? But if that were the case, couldn’t leaving Europe in 2016 also have meant something different than in 2019?

But the Leave proponents wouldn’t have any of that. They had already invested too much money and effort and spent all this time giving TED talks about their shiny little theory to give up now. They were in fact desperately afraid of a direct replication because they knew that as with most replications it would probably end in a null result and their beautiful theoretical construct would collapse like a house of cards. Deep inside, most of these people already knew they were chasing a phantom but they couldn’t ever admit it. People like Professor BoJo, Dr Moggy, and Micky “The Class Clown” Gove had built their whole careers on this Leave idea and so they defended the “will of the people” with religious zeal. The last straw they clutched to was to warn that all these failures to replicate would cause irreparable damage to the public’s faith in science.

Only Nigel Farage, unaffiliated garden gnome and self-styled “irreverent citizen scientist”, relented somewhat. Naturally, he claimed he would be doing all that just for science and the pursuit of the truth and that the result of this replication would be even clearer than the 2016 finding. But in truth, he smelled the danger on the wind. He knew that should the Leave hypothesis be finally accepted by consensus, he would be reduced to a complete irrelevance. What was more, he would not get that hefty paycheck.

As of today, the situation remains unresolved. The preregistered replication attempt is still stuck in editorial triage and hasn’t even been sent out for peer review yet. But meanwhile, people in the corridors of power in Westminster and Brussels and Tokyo and wherever else are already basing their decisions on the really weak and poor and quite possibly fraudulent data from the flawed 2016 study. But then, it’s all about the flair, isn’t it?

brexit_demonstration_flags
Shameless little bullies calling for an independent replication outside of the Palace of Westminster (Source: ChiralJon)

What is a “publication”?

I was originally thinking of writing a long blog post discussing this but it is hard to type verbose treatises like that from inside my gently swaying hammock. So y’all will be much relieved to hear that I spare you that post. Instead I’ll just post the results of the recent Twitter poll I ran, which is obviously enormously representative of the 336 people who voted. Whatever we’re going to make of this, I think it is obvious that there remains great scepticism about treating preprints the same as publications. I am also puzzled by what the hell is wrong with the 8% who voted for the third option*. Do these people not put In press articles on their CVs?

screenshot 2019-01-19 at 16.53.25

*) Weirdly, I could have sworn that when the poll originally closed this percentage was 9%. Somehow it was corrected downwards afterward. Should this be possible?