A brave new world of research parasites

What a week! I have rarely seen the definition of irony being demonstrated more clearly in front of my eyes than during the days following the publication of this comment by Lewandowsky and Bishop in Nature. I mentioned this at the end of my previous post. The comment discusses the question how to deal with data requests and criticisms of scientific claims in the new world of open science. A lot of digital ink has already been spilled elsewhere debating what they did or didn’t say and what they meant to say with their article. I have no intention of rehashing that debate here. So while I typically welcome any meaningful and respectful comments under my posts, I’ll regard any comments on the specifics of the L&B article as off-topic and will not publish them. There are plenty of other channels for this.

I think the critics attack a strawman and the L&B discussion is a red herring. Irrespective of what they actually said, I want to get back to the discussion we should be having, which I already alluded to last time.  In order to do so, let’s get the premise crystal clear. I have said all this before in my various posts about data sharing but let me summarise the fundamental points:

  1. Data sharing: All data for scientific studies needed to reproduce the results should be made public in some independent repository at the point of publication. This must exclude data which would be unethical to share, e.g. unprocessed brain images from human participants. Such data fall in a grey area as to how much anonymisation is necessary and it is my policy to err on the side of caution there. We have no permission from our participants (except for some individual cases) to share their data with anyone outside the team if there is a chance that they could be identified from it so we don’t. For the overwhelming majority of purposes such data are not required and the pre-processed, anonymised data will suffice.
  2. Material sharing: When I talk about sharing data I implicitly also mean material so any custom analysis code, stimulus protocols, or other materials used for the study  should also be shared. This is not only good for reproducibility, i.e. getting the same results using the same data. It is also useful for replication efforts aiming to repeat the same experiment to collect new data.
  3. Useful documentation: Shared data are unlikely to be much use to anyone if there isn’t a minimum of documentation explaining what it contains. I don’t think this needs to be excessive, especially given the fact that most data will probably never be accessed by anyone. But there should at least be some basic guide how to use the data to return a result. It should be reasonably clear what data can be found where or how to run the experiment. Provided the uncompiled code is included and the methods section of the publication contains sufficient detail of what is being done, anyone looking at it should be able to work it out by themselves. More extensive documentation is certainly helpful and may also help the researchers themselves in organising their work – but I don’t think we should expect more than the basics.

Now with this out of the way I don’t want to hear no lamentations about how I am “defending” the restriction of data access to anyone or any such rubbish. Let’s simply work on the assumption that the world is how it should be and that the necessary data are available to anyone with an internet connection. So let’s talk about the worries and potential problems this may bring. Note that, as I already said, most data sets will probably not generate much interest. That is fine – they should be available for potential future use in any case. More importantly this doesn’t mean the following concerns aren’t valid:

Volume of criticism

In some cases the number of people reusing the shared data will be very large. This is particularly likely for research on controversial topics. This could be because the topic is a political battleground or that the research is being used to promote policy changes people are not happy with. Perhaps the research receives undeserved accolades from the mainstream media or maybe it’s just a very sensational claim (Psi research springs to mind again…). The criticisms of this research may or may not be justified. None of this matters and I don’t care to hear about the specifics about your particular pet peeve whether it’s climate change or some medical trial. All that matters in this context is that the topic is controversial.

As I said last time, it should be natural that sensational or controversial research attracts more attention and more scepticism. This is how it should be. Scientists should be sceptical. But individual scientists or small research teams are composed of normal human beings and they have a limit with how much criticism they can keep up with. This is a simple fact. Of course this statement will no doubt draw out the usual suspects who feel the need to explain to me that criticism and scepticism is necessary in science and that this is simply what one should expect.

396px-bookplate_of_the_royal_society_28great_britain29

So let me cut the heads off this inevitable hydra right away. First of all, this is exactly what I just said: Yes, science depends on scepticism. But it is also true that humans have limited capacity for answering questions and criticisms and limited ability to handle stress. Simply saying that they should be prepared for that and have no right to complain is unrealistic. If anything it will drive people away from doing research on controversial questions which cannot be a good thing.

Similar, it is unrealistic to say that they could just ignore criticisms if it gets too much for them. It is completely natural that a given scientist will want to respond to criticisms, especially if those criticisms are public. They will want to defend the conclusions they’ve drawn and they will also feel that they have a reputation to defend. I believe science would generally be better off if we all learned to become less invested in our pet theories and conducted our inferences in a less dogmatic way. I hope there are ways we can encourage such a change – but I don’t think you can take ego out of the question completely. Especially if a critic accuses a researcher of incompetence or worse, it shouldn’t surprise anyone if they react emotionally and have personal stakes in the debate.

So what can we expect? To me it seems entirely justified in this situation that a researcher would write a summary response that addresses the criticism collectively. In that they would most likely have to be selective and only address the more serious points and ignore the minutia. This may require some training. Even then it may be difficult because critics might insist that their subtle points are of fundamental importance. In that situation an adjudicating article by an independent party may be helpful (albeit probably not always feasible).

On a related note, it also seems justified to me that a researcher will require time to make a response. This pertains more to how we should assess a scientific disagreement as outside observers. Just because a researcher hasn’t responded to every little criticism within days of somebody criticising their work doesn’t mean that the criticism is valid. Scientists have lives too. They have other professional duties, mortgages to pay with their too-low salaries, children to feed, and – hard as it is to believe – they deserve some time off occasionally. As long as they declare their intention to respond in depth at some stage we should respect that. Of course if they never respond that may be a sign that they simply don’t have a good response to the criticism. But you need some patience, something we seem to have lost in the age of instant access social media.

Excessive criticism or harassment

This brings us to the next issue. Harassment of researchers is never okay. Which is really because harassment of anyone is never okay. So pelting a researcher with repeated criticisms, making the same points or asking the same questions over and over, is not acceptable. This certainly borders on harassment and may cross the line. This constant background noise can wear people out. It is also counterproductive because it slows them down in making their response. It may also paralyse their other research efforts which in turn will stress them out because they have grant obligations to fulfill etc. Above all, stress can make you sick. If you harassed somebody out of the ability to work, you’ll never get a response – this doesn’t make your criticism valid.

If the researchers declared their intention to respond to criticism we should leave it at that. If they don’t respond after a significant time it might be worth a reminder if they are still working on it. As I said above, if they never respond this may be a sign that they have no response. In that case, leave it at that.

It should require no explanation why any blatant harassment, abusive contact, or any form of interference in the researchers’ personal lives, is completely unacceptable. Depending on the severity of such cases they should be prosecuted to the full extent of the law. And if someone reports harassment, in the first instance you should believe them. It is a common tactic of harassers to downplay claims of abuse. Sure, it is also unethical to make false accusations but you should leave that for the authorities to judge, in particular if you don’t have any evidence one way or the other. Harassment is also subjective. What might not bother you may very well affect another person badly. Brushing this off as them being too sensitive demonstrates a serious lack of compassion, is disrespectful, and I think it also makes you seem untrustworthy.

Motive and bias

Speaking of untrustworthiness brings me to the next point. There has been much discussion about the motives of critics and in how far a criticism is to be taken in “good faith”. This is a complex and highly subjective judgement. In my view, your motive for reanalysing or critiquing a particular piece of research is not automatically a problem. All the data should be available, remember? Anyone can reanalyse it.

However, as all researchers should be honest so should all critics. Obviously this isn’t mandatory and it couldn’t be enforced even if it were. But this is how it should be and how good scientists should work. I have myself criticised and reanalysed research by others and I was not beating around the bush in either case – I believe I was pretty clear that I didn’t believe their hypothesis was valid. Hiding your prior notions is disrespectful to the authors and also misleads the neutral observers of the discussion. Even if you think that your public image already makes your views clear – say, because you ranted at great length on social media about how terribly flawed you think that study was – this isn’t enough. Even the Science Kardashians don’t have that large a social media following and probably only a fraction of that following will have read all your in-depth rants.

In addition to declaring your potential bias you should also state your intention. It is perfectly justified to dig into the data because you suspect it isn’t kosher. But this is an exploratory analysis and it comes with many of the same biases that uncontrolled, undeclared exploration always has. Of course you may find some big smoking gun that invalidates or undermines the original authors’ conclusions. But you are just as likely to find some spurious glitch or artifact in the data that doesn’t actually mean anything. In the latter case it would make more sense to conduct a follow up experiment that tests  your new alternative hypothesis to see if your suspicion holds up. If on the other hand you have a clear suspicion to start with you should declare it and then test it and report the findings no matter what. Preregistration may help to discriminate the exploratory fishing trips from the pointed critical reanalyses – however, it is logistically not very feasible to check whether this wasn’t just a preregistration after the fact because the data were already available.

So I think this judgement will always rely heavily on trust but that’s not a bad thing. I’m happy to trust a critic if they declare their prior opinion. I will simply take their views with some scepticism that their bias may have influenced them. A critic who didn’t declare their bias but is then shown to have a bias appears far less trustworthy. So it is actually in your interest to declare your bias.

Now before anyone inevitably reminds us that we should also worry about the motives and biases of the original authors – yes, of course. But this is a discussion we’ve already had for years and this is why data sharing and novel publication models like preregistration and registered reports are becoming more commonplace.

Lack of expertise

On to the final point. Reanalyses or criticism may come from people with limited expertise and knowledge of a research area to provide useful contributions. Such criticisms may obfuscate the discussion and that is never a good thing. Again preempting the inevitable comments: No, this does not mean that you have to prove your expertise to reanalyse the data. (Seriously guys, which part of “all data should be available to anyone” don’t you get?!). What it does mean is that I might not want to weight the criticism by someone who once took a biology class in high school the same way as that of a world expert. It also means that I will be more sceptical when someone is criticising something outside their own field.

There are many situations where this caveat doesn’t matter. Any scientist with some statistical training may be able to comment on some statistical issue. In fact, a statistician is presumably more qualified to comment on some statistical point than a non-statistician of whatever field. And even if you may not be an expert on some particular research topic you may still be an expert on the methods used by the researchers. Importantly, even a non-expert can reveal a fundamental flaw. The lack of a critic’s expertise shouldn’t be misused to discredit them. In the end, what really matters is that your argument is coherent and convincing. For that it doesn’t actually matter if you are an expert or not (an expert may however find it easier to communicate their criticism convincingly).

However, let’s assume that a large number of non-experts are descending on a data set picking little things they perceive as flaws that aren’t actually consequential or making glaring errors (to an expert) in their analysis. What should the researchers do in this situation? Not responding at all is not in their interest. This can easily be misinterpreted as a tacit acknowledgement that their research is flawed. On the other hand, responding to every single case is not in their interest either if they want to get on with their work (and their lives for that matter). As above, perhaps the best thing to do would be write a summary response collectively rebuking the most pertinent points, make a clear argument about the inconsequentialness of these criticisms, and then leave it at that.

Conclusion

In general, scientific criticisms are publications that should work like any other scientific publications. They should be subject to peer review (which, as readers of this blog will know, I believe should be post-publication and public). This doesn’t mean that criticism cannot start on social media, blogs, journal comment sections, or on PubPeer, and the boundaries may also blur at times. For some kinds of criticism, such as pointing out basic errors or misinterpretations some public comments may suffice and there have been cases where a publication was retracted simply because of the social media response. But for a criticism to be taken seriously by anyone, especially non-experts, it helps if it is properly vetted by independent experts – just how any study should be vetted. This may also help particularly with cases where the validity of the criticism is uncertain.

I think this is a very important discussion to have. We need to have this to bring about the research culture most of us seem to want. A brave new world of happy research parasites.

Parasites

(Note: I changed the final section somewhat after Neuroskeptic rightly pointed out that the conclusions were a bit too general. Tal Yarkoni independently replicated this sentiment. But he was only giving me a hard time.)

 

3 thoughts on “A brave new world of research parasites

  1. I agree with most of this important post, so this is not a criticism, but more of a tangential comment.

    If “scientific criticisms are publications that should work like any other scientific publications. They should be subject to peer review (which, as readers of this blog will know, I believe should be post-publication and public).”, then what about the peer reviews?

    Should peer reviews be subject to peer review themselves…?

    If yes, it would seem to create an infinite regress: one paper would require reviews and then reviews of those reviews… and reviews of reviews of reviews…

    If no, why not? Are open peer reviews not published contributions to science…?

    Like

    1. You raise a good point. I think the answer to this is yes and no. In the world of post-publication review we should certainly want some evaluation of peer reviewer comments. Peer reviews should be citeable (on many PPPR platforms they already are). Of course I don’t think that every peer review should be reviewed which indeed would turn into infinite regress.

      All I am really saying is that reviewer comments should be public and people should be able to comment on them. Doesn’t mean they typically will but it should be possible to flag up problems or errors with the reviews. I also think this needs some moderation because otherwise it just descends into shouting matches again.

      Another, not mutually exclusive, idea is that you can have ratings for comments. I am personally not a big fan of this though. The whole liking or up/down voting on some sites is hardly ever used very well. And it certainly wouldn’t be protected from abuse in controversial cases which is where it really matters.

      Like

    2. I should probably add that the peer review thought was really something I added at the end. It’s not that fleshed out – we should discuss this more at the Cognitive Drinks on changing the publishing system perhaps?

      It’s basically that I went through that list of issues and got to the conclusion and I was suddenly thinking “You know, peer review would help control this a lot actually.” Certainly in the case where a research is inundated by multiple criticisms by non-experts, peer review of the criticism would help reign that in. By having reviewers check the validity of the claims it would also spread the weight of it more and thus alleviate the pressure on the authors.

      Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s