Of hacked peas and crooked teas

The other day, my twitter feed got embroiled in another discussion about whether or not p-hacking is deliberate and if it constitutes fraud. Fortunately, I then immediately left for a trip abroad and away from my computer, so there was no danger of me being drawn into this debate too deeply and running the risk of owing Richard Morey another drink. However, now that I am back I wanted to elaborate a bit more on why I think the way our field has often approached p-hacking is both wrong and harmful.

What the hell is p-hacking anyway? When I google it I get this Wikipedia article, which uses it as a synonym for “data dredging”. There we already have a term that seems to me more appropriate. P-hacking refers to when you massage your data and analysis methods until your result reaches a statistically significant p-value. I will put it to you that in practice most p-hacking is not necessarily about hacking p-s but about dredging your data until your results fit a particular pattern. That may be something you predicted but didn’t find or could even just be some chance finding that looked interesting and is amplified this way. However, the p-value is usually probably secondary to the act here. The end result may very well be the same in that you continue abusing the data until a finding becomes significant, but I would bet that in most cases what matters to people is not the p-value but the result. Moreover, while null-hypothesis significance testing with p-values is still by far the most widespread way to make inferences about results, it is not the only way. All this fussing about p-hacking glosses over the fact that the same analytic flexibility or data dredging can be applied to any inference, whether it is based on p-values, confidence intervals, Bayes factors, posterior probabilities, or simple summary statistics. By talking of p-hacking we create a caricature that this is somehow a problem specific to p-values. Whether or not NHST is the best approach for making statistical inferences is a (much bigger) debate for another day – but it has little to do with p-hacking.

What is more, not only is p-hacking not really about p’s but it is also not really about hacking. Here is the dictionary entry for the term ‘hacking‘. I think we can safely assume that when people say p-hacking they don’t mean that peas are physically being chopped or cut or damaged in any way. I’d also hazard a guess that it’s not meant in the sense of “to deal or cope with” p-values. In fact, the only meaning of the term that seems to come even remotely close is this:

“to modify a computer program or electronic device in a skillful or clever way”

Obviously, what is being modified in p-hacking is the significance or impressiveness of a result, rather than a computer program or electronic device, but we can let this slide. I’d also suggest that it isn’t always done in a skillful or clever way either, but perhaps we can also ignore this. However, the verb ‘hacking’ to me implies that this is done in a very deliberate way. It may even, as with computer hacking, carry the connotation of fraud, of criminal intent. I believe neither of these things are true about p-hacking.

That is not to say that p-hacking isn’t deliberate. I believe in many situations it likely is. People no doubt make conscious decisions when they dig through their data. But the overwhelming majority of p-hacking is not deliberately done to create spurious results that the researcher knows to be false. Anyone who does so would be committing actual fraud. Rather, most p-hacking is the result of confirmation bias combined with analytical flexibility. This leads people to sleep walk into creating false positives or – as Richard Feynman would have called it – fooling themselves. Simine Vazire already wrote an excellent post about this a few years ago (and you may see a former incarnation of yours truly in the comment section arguing against the point I’m making here… I’d like to claim that it’s cause I have grown as a person but in truth I only exorcised this personality :P). I’d also guess that a lot of p-hacking happens out of ignorance, although that excuse really shouldn’t fly as easily in 2017 as it may have done in 2007. Nevertheless, I am pretty sure people do not normally p-hack because they want to publish false results.

Some may say that it doesn’t matter whether or not p-hacking is fraud – the outcome is the same: many published results are false. But in my view it’s not so simple. First, the solution to these two problems surely isn’t the same. Preregistration and transparency may very well solve the problem of analytical flexibility and data dredging – but it is not going to stop deliberate fraud, nor is it meant to. Second, actively conflating fraud and data dredging implicitly accuses researchers of being deliberately misleading and thus automatically puts them on the defensive. This is hardly a way to have a productive discussion and convince people to do something about p-hacking. You don’t have to look very far for examples of that playing out. Several protracted discussions on a certain Psychology Methods Facebook group come to mind…

Methodological flexibility is a real problem. We definitely should do something about it and new moves towards preregistration and data transparency are at least theoretically effective solutions to improve things. The really pernicious thing about p-hacking is that people are usually entirely unaware of the fact that they are doing it. Until you have tried to do a preregistered study, you don’t appreciate just how many forks in the road you passed along the way (I may blog about my own experiences with that at some point). So implying, however unintentionally, that people are fraudsters is not helping matters.

Preregistration and data sharing have gathered a lot of momentum over the past few years. Perhaps the opinions of some old tenured folks opposed to such approaches no longer carry so much weight now, regardless how powerful they may be. But I’m not convinced that this is true. Just because there has been momentum now does not mean that these ideas will prevail. It is just as likely that they fizzle out due to lacking enthusiasm or because people begin to feel that the effort isn’t worth it. I seems to me that “open science” very much exists in a bubble and I have bemoaned that before. To change scientific practices we need to open the hearts and minds of sceptics to why p-hacking is so pervasive. I don’t believe we will achieve that by preaching to them. Everybody p-hacks if left to their own devices. Preregistration and open data can help protect yourself against your mind’s natural tendency to perceive patterns in noise. A scientist’s training is all about developing techniques to counteract this tendency, and so open practices are just another tool for achieving that purpose.

1920px-fish2c_chips_and_mushy_peas
There is something fishy about those pea values…

 

2 thoughts on “Of hacked peas and crooked teas

  1. The term “hacking” has a long history, particularly among American scientists (e.g., https://en.wikipedia.org/wiki/Hacks_at_the_Massachusetts_Institute_of_Technology). It’s only recently come to be associated with explicitly nefarious ends (as opposed to what in UK usage might be called “jolly japes”). For many computer programmers, a “hack” is a cool (if somewhat ad hoc) solution to a problem, not to be confused with a “kludge” which is an uncool ad hoc solution.

    Also, I get your point about how this would be a problem if p-values were not the benchmark, but the fact is that, today, they are. I have absolutely no doubt that if by some miracle the world moved over to Bayes factors tomorrow, we would have rampant B-hacking by the weekend.

    The fundamental (and, in my opinion, insoluble) problem is that when people understand that rewards are allocated within the rules of a system, they will start to game that system. That doesn’t require them to have a Dr. Evil mentality; it’s sufficient to have the very ordinary human attachment to the idea that at the end of this month a moderately comforting amount of money will be deposited in one’s bank account.

    Like

    1. Yes I am obviously being a bit facetious about the hacking thing – but you get my point. And either way, I think hacking does imply that it’s done deliberately to produce false findings and I don’t think this is true (at least not in the vast majority of instances). I really think it’s a just case of fooling yourself.

      But I do think there is hope. For example, I get the impression that optional stopping has become far less widespread with increased awareness of its problems and techniques that can account for it.

      Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s